

Newton's Laws of Motion

Note that Newton's Second Law is a *VECTOR* equation:

$$\vec{F}_{NET} = m \vec{a} = \begin{cases} F_{NET,x} = m a_x \\ F_{NET,y} = m a_y \\ F_{NET,z} = m a_z \end{cases}$$

∀ Cartesian coordinate systems you care to define!

Some particular forces:

ssis manual and Scravity near planetary surface (weight):

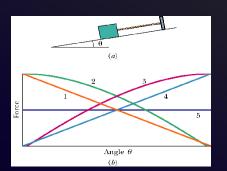
 $rightarrow F_q = m g = W$

♦ Normal force, N

♦ (perpendicular to)

 \star Tension, T

- ✤ in a cord, rope, string, cable, *etc.*
- Assume T in a section is constant
- "massless," "non-stretching"
- Friction resistance to motion


Modeling friction:

Static friction

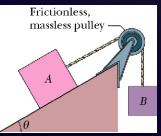
• $F_s \leq \mu_s N$ • $\mu_s =$ coefficient of static friction Kinetic friction • $F_k = \mu_k N$ • $\mu_k =$ coefficient of kinetic friction

Try This:

- A block is attached to a rope to a bar that is itself rigidly attached to a ramp. What happens to the following as the angle θ is increased?
- A. Component of gravitational force along the ramp.
- B. The tension in the cord.
- c. The gravitational force perpendicular to the ramp.
- D. The normal force on the block from the ramp.
- E. Which of the curves in the plot corresponds to each of these quantities?

Newton's Third Law

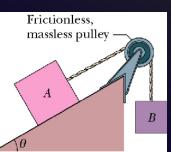
- Applies to the interaction between masses.
- The force mass 1 exerts on mass 2 is equal in magnitude to the force exerted on mass 1 by mass 2:


$$\vec{F}_{12} = -\vec{F}_{21}$$

"For every action there is an equal and opposite reaction."

EXAMPLE: Two blocks, $m_A \& m_B$, are connected over a frictionless, massless pulley. The mass of block A is 10 kg and the coefficient of kinetic friction between block A and the incline is 0.20. The angle of inclination is 30°. Block A slides down the incline at a constant speed. Find the mass of block B.

KNOWNS:


- Massless pulley
- ▶ *m*_A = 10 kg
- $\theta = 30^{\circ}$
- $\mu_k = 0.20$
- Block A slides down @ const velocity
- ▶ Find *m_B*

EXAMPLE: Two blocks, $m_A \& m_B$, are connected over a frictionless, massless pulley. The mass of block A is 10 kg and the coefficient of kinetic friction between block A and the incline is 0.20. The angle of inclination is 30°. Block A slides down the incline at a constant acceleration of magnitude $a = 1.3 \text{ m/s}^2$. Find the mass of block B.

KNOWNS:

- Massless pulley
- $\mathbf{M}_A = 10 \ kg$
- $\theta = 30^{\circ}$
- ▶ $\mu_k = 0.20$
- Block A slides down @ const <u>acceleration</u>, a = 1.3 m/s².
- ▶ Find *m_B*

